Extensions 1→N→G→Q→1 with N=C32 and Q=M4(2)

Direct product G=N×Q with N=C32 and Q=M4(2)
dρLabelID
C32×M4(2)72C3^2xM4(2)144,105

Semidirect products G=N:Q with N=C32 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C321M4(2) = C32⋊M4(2)φ: M4(2)/C4C4 ⊆ Aut C32244C3^2:1M4(2)144,131
C322M4(2) = D6.Dic3φ: M4(2)/C4C22 ⊆ Aut C32484C3^2:2M4(2)144,54
C323M4(2) = C12.31D6φ: M4(2)/C4C22 ⊆ Aut C32244C3^2:3M4(2)144,55
C324M4(2) = C62.C4φ: M4(2)/C22C4 ⊆ Aut C32244-C3^2:4M4(2)144,135
C325M4(2) = C3×C8⋊S3φ: M4(2)/C8C2 ⊆ Aut C32482C3^2:5M4(2)144,70
C326M4(2) = C24⋊S3φ: M4(2)/C8C2 ⊆ Aut C3272C3^2:6M4(2)144,86
C327M4(2) = C3×C4.Dic3φ: M4(2)/C2×C4C2 ⊆ Aut C32242C3^2:7M4(2)144,75
C328M4(2) = C12.58D6φ: M4(2)/C2×C4C2 ⊆ Aut C3272C3^2:8M4(2)144,91


׿
×
𝔽